Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(4): e0401723, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488280

RESUMO

Haemophilus and Aggregatibacter are two of the most common bacterial genera in the human oral cavity, encompassing both commensals and pathogens of substantial ecological and medical significance. In this study, we conducted a metapangenomic analysis of oral Haemophilus and Aggregatibacter species to uncover genomic diversity, phylogenetic relationships, and habitat specialization within the human oral cavity. Using three metrics-pangenomic gene content, phylogenomics, and average nucleotide identity (ANI)-we first identified distinct species and sub-species groups among these genera. Mapping of metagenomic reads then revealed clear patterns of habitat specialization, such as Aggregatibacter species predominantly in dental plaque, a distinctive Haemophilus parainfluenzae sub-species group on the tongue dorsum, and H. sp. HMT-036 predominantly in keratinized gingiva and buccal mucosa. In addition, we found that supragingival plaque samples contained predominantly only one out of the three taxa, H. parainfluenzae, Aggregatibacter aphrophilus, and A. sp. HMT-458, suggesting independent niches or a competitive relationship. Functional analyses revealed the presence of key metabolic genes, such as oxaloacetate decarboxylase, correlated with habitat specialization, suggesting metabolic versatility as a driving force. Additionally, heme synthesis distinguishes H. sp. HMT-036 from closely related Haemophilus haemolyticus, suggesting that the availability of micronutrients, particularly iron, was important in the evolutionary ecology of these species. Overall, our study exemplifies the power of metapangenomics to identify factors that may affect ecological interactions within microbial communities, including genomic diversity, habitat specialization, and metabolic versatility. IMPORTANCE: Understanding the microbial ecology of the mouth is essential for comprehending human physiology. This study employs metapangenomics to reveal that various Haemophilus and Aggregatibacter species exhibit distinct ecological preferences within the oral cavity of healthy individuals, thereby supporting the site-specialist hypothesis. Additionally, it was observed that the gene pool of different Haemophilus species correlates with their ecological niches. These findings shed light on the significance of key metabolic functions in shaping microbial distribution patterns and interspecies interactions in the oral ecosystem.


Assuntos
Ecossistema , Haemophilus , Humanos , Aggregatibacter/fisiologia , Filogenia , Haemophilus/genética , Boca
2.
Nature ; 628(8007): 424-432, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509359

RESUMO

Fusobacterium nucleatum (Fn), a bacterium present in the human oral cavity and rarely found in the lower gastrointestinal tract of healthy individuals1, is enriched in human colorectal cancer (CRC) tumours2-5. High intratumoural Fn loads are associated with recurrence, metastases and poorer patient prognosis5-8. Here, to delineate Fn genetic factors facilitating tumour colonization, we generated closed genomes for 135 Fn strains; 80 oral strains from individuals without cancer and 55 unique cancer strains cultured from tumours from 51 patients with CRC. Pangenomic analyses identified 483 CRC-enriched genetic factors. Tumour-isolated strains predominantly belong to Fn subspecies animalis (Fna). However, genomic analyses reveal that Fna, considered a single subspecies, is instead composed of two distinct clades (Fna C1 and Fna C2). Of these, only Fna C2 dominates the CRC tumour niche. Inter-Fna analyses identified 195 Fna C2-associated genetic factors consistent with increased metabolic potential and colonization of the gastrointestinal tract. In support of this, Fna C2-treated mice had an increased number of intestinal adenomas and altered metabolites. Microbiome analysis of human tumour tissue from 116 patients with CRC demonstrated Fna C2 enrichment. Comparison of 62 paired specimens showed that only Fna C2 is tumour enriched compared to normal adjacent tissue. This was further supported by metagenomic analysis of stool samples from 627 patients with CRC and 619 healthy individuals. Collectively, our results identify the Fna clade bifurcation, show that specifically Fna C2 drives the reported Fn enrichment in human CRC and reveal the genetic underpinnings of pathoadaptation of Fna C2 to the CRC niche.


Assuntos
Neoplasias Colorretais , Fusobacterium nucleatum , Animais , Humanos , Camundongos , Adenoma/microbiologia , Estudos de Casos e Controles , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Fezes/microbiologia , Fusobacterium nucleatum/classificação , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/isolamento & purificação , Fusobacterium nucleatum/patogenicidade , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Genoma Bacteriano/genética , Boca/microbiologia , Feminino
3.
bioRxiv ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37398369

RESUMO

Cancerous tissue is a largely unexplored microbial niche that provides a unique environment for the colonization and growth of specific bacterial communities, and with it, the opportunity to identify novel bacterial species. Here, we report distinct features of a novel Fusobacterium species, F. sphaericum sp. nov. ( Fs ), isolated from primary colon adenocarcinoma tissue. We acquire the complete, closed genome of this organism and phylogenetically confirm its classification into the Fusobacterium genus. Phenotypic and genomic analysis of Fs reveal that this novel organism is of coccoid shape, rare for Fusobacterium members, and has species-distinct gene content. Fs displays a metabolic profile and antibiotic resistance repertoire consistent with other Fusobacterium species. In vitro, Fs has adherent and immunomodulatory capabilities, as it intimately associates with human colon cancer epithelial cells and promotes IL-8 secretion. Analysis of the prevalence and abundance of Fs in ∼1,750 human metagenomic samples shows that it is a moderately prevalent member of the human oral cavity and stool. Intriguingly, analysis of ∼1,270 specimens from patients with colorectal cancer demonstrate that Fs is significantly enriched in colonic and tumor tissue as compared to mucosa or feces. Our study sheds light on a novel bacterial species that is prevalent within the human intestinal microbiota and whose role in human health and disease requires further investigation.

4.
Microbiome ; 11(1): 161, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491415

RESUMO

BACKGROUND: Porphyromonas gingivalis (hereafter "Pg") is an oral pathogen that has been hypothesized to act as a keystone driver of inflammation and periodontal disease. Although Pg is most readily recovered from individuals with actively progressing periodontal disease, healthy individuals and those with stable non-progressing disease are also colonized by Pg. Insights into the factors shaping the striking strain-level variation in Pg, and its variable associations with disease, are needed to achieve a more mechanistic understanding of periodontal disease and its progression. One of the key forces often shaping strain-level diversity in microbial communities is infection of bacteria by their viral (phage) predators and symbionts. Surprisingly, although Pg has been the subject of study for over 40 years, essentially nothing is known of its phages, and the prevailing paradigm is that phages are not important in the ecology of Pg. RESULTS: Here we systematically addressed the question of whether Pg are infected by phages-and we found that they are. We found that prophages are common in Pg, they are genomically diverse, and they encode genes that have the potential to alter Pg physiology and interactions. We found that phages represent unrecognized targets of the prevalent CRISPR-Cas defense systems in Pg, and that Pg strains encode numerous additional mechanistically diverse candidate anti-phage defense systems. We also found that phages and candidate anti-phage defense system elements together are major contributors to strain-level diversity and the species pangenome of this oral pathogen. Finally, we demonstrate that prophages harbored by a model Pg strain are active in culture, producing extracellular viral particles in broth cultures. CONCLUSION: This work definitively establishes that phages are a major unrecognized force shaping the ecology and intra-species strain-level diversity of the well-studied oral pathogen Pg. The foundational phage sequence datasets and model systems that we establish here add to the rich context of all that is already known about Pg, and point to numerous avenues of future inquiry that promise to shed new light on fundamental features of phage impacts on human health and disease broadly. Video Abstract.


Assuntos
Bacteriófagos , Doenças Periodontais , Humanos , Bacteriófagos/genética , Porphyromonas gingivalis/genética , Prófagos/genética , Sequência de Bases
5.
J Oral Microbiol ; 15(1): 2225261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361319

RESUMO

Gemella species are core members of the human oral microbiome in healthy subjects and are regarded as commensals, although they can cause opportunistic infections. Our objective was to evaluate the site-specialization of Gemella species among various habitats within the mouth by combining pangenomics and metagenomics. With pangenomics, we identified genome relationships and categorized genes as core and accessory to each species. With metagenomics, we identified the primary oral habitat of individual genomes. Our results establish that the genomes of three species, G. haemolysans, G. sanguinis and G. morbillorum, are abundant and prevalent in human mouths at different oral sites: G. haemolysans on buccal mucosa and keratinized gingiva; G. sanguinis on tongue dorsum, throat, and tonsils; and G. morbillorum in dental plaque. The gene-level basis of site-specificity was investigated by identifying genes that were core to Gemella genomes at a specific oral site but absent from other Gemella genomes. The riboflavin biosynthesis pathway was present in G. haemolysans genomes associated with buccal mucosa but absent from the rest of the genomes. Overall, metapangenomics show that Gemella species have clear ecological preferences in the oral cavity of healthy humans and provides an approach to identifying gene-level drivers of site specificity.

6.
Microbiol Spectr ; 11(1): e0404222, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36695592

RESUMO

Veillonella species are abundant members of the human oral microbiome with multiple interspecies commensal relationships. Examining the distribution patterns of Veillonella species across the oral cavity is fundamental to understanding their oral ecology. In this study, we used a combination of pangenomic analysis and oral metagenomic information to clarify Veillonella taxonomy and to test the site specialist hypothesis for the Veillonella genus, which contends that most oral bacterial species are adapted to live at specific oral sites. Using isolate genome sequences combined with shotgun metagenomic sequence data, we showed that Veillonella species have clear, differential site specificity: Veillonella parvula showed strong preference for supra- and subgingival plaque, while closely related V. dispar, as well as more distantly related V. atypica, preferred the tongue dorsum, tonsils, throat, and hard palate. In addition, the provisionally named Veillonella sp. Human Microbial Taxon 780 showed strong site specificity for keratinized gingiva. Using comparative genomic analysis, we identified genes associated with thiamine biosynthesis and the reductive pentose phosphate cycle that may enable Veillonella species to occupy their respective habitats. IMPORTANCE Understanding the microbial ecology of the mouth is fundamental for understanding human physiology. In this study, metapangenomics demonstrated that different Veillonella species have clear ecological preferences in the oral cavity of healthy humans, validating the site specialist hypothesis. Furthermore, the gene pool of different Veillonella species was found to be reflective of their ecology, illuminating the potential role of vitamins and carbohydrates in determining Veillonella distribution patterns and interspecies interactions.


Assuntos
Microbiota , Veillonella , Humanos , Veillonella/genética , Boca/microbiologia , Língua/microbiologia , Tonsila Palatina
7.
J Oral Microbiol ; 15(1): 2143651, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36452178

RESUMO

Aims: The aim of this research was to isolate oral bacteria that are dependent for growth on adjacent bacteria producing a required growth factor and to identify the chemical structure of the growth factor. Methods: Porphyromonas pasteri strain KLE1280, could be cultivated with Staphylococcus hominis and Escherichia coli as helper strains. A deletion mutant library of E. coli was screened to determine genes involved in production of the growth factor. Compounds produced by the growth factor's pathway were screened to see if they would stimulate growth of strain P. pasteri KLE1280. The genomes of species related to P. pasteri KLE1280 were screened for presence of the factor's synthetic pathway. Results: Analysis of the E. coli deletion mutant library and growth studies identified 1,2-dihydroxy-2-naphthoic acid (DHNA) and menaquinone-4 (MK4) as the growth factors. Strain P. pasteri KLE1280 was shown to lack five genes in the menaquinone synthesis pathway but to possess the two genes necessary to convert DHNA to menaquinone. Genome analysis found that 8 species in genera Porphyromonas and Tannerella lack five genes in the menaquinone synthesis pathway. Conclusions: Addition of DHNA to culture media allows isolation of strains of several oral species that are not recovered using standard media.

8.
Mol Oral Microbiol ; 37(6): 229-243, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36073311

RESUMO

A detailed understanding of where bacteria localize is necessary to advance microbial ecology and microbiome-based therapeutics. The site-specialist hypothesis predicts that most microbes in the human oral cavity have a primary habitat type within the mouth where they are most abundant. We asked whether this hypothesis accurately describes the distribution of the members of the genus Streptococcus, a clinically relevant taxon that dominates most oral sites. Prior analysis of 16S rRNA gene sequencing data indicated that some oral Streptococcus clades are site-specialists while others may be generalists. However, within complex microbial populations composed of numerous closely related species and strains, such as the oral streptococci, genome-scale analysis is necessary to provide the resolution to discriminate closely related taxa with distinct functional roles. Here, we assess whether individual species within this genus are specialists using publicly available genomic sequence data that provide species-level resolution. We chose a set of high-quality representative genomes for human oral Streptococcus species. Onto these genomes, we mapped shotgun metagenomic sequencing reads from supragingival plaque, tongue dorsum, and other sites in the oral cavity. We found that every abundant Streptococcus species in the healthy human oral cavity showed strong site-tropism and that even closely related species such as S. mitis, S. oralis, and S. infantis specialized in different sites. These findings indicate that closely related bacteria can have distinct habitat distributions in the absence of dispersal limitation and under similar environmental conditions and immune regimes. Substantial overlap between the core genes of these three species suggests that site-specialization is determined by subtle differences in genomic content.


Assuntos
Microbiota , Streptococcus , Humanos , RNA Ribossômico 16S/genética , Streptococcus/genética , Microbiota/genética , Metagenoma , Bactérias/genética , Boca/microbiologia , Tropismo , Filogenia
9.
Microbiol Resour Announc ; 10(48): e0095921, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854708

RESUMO

We report the complete genome of Arachnia rubra strain DSM 100122T. The genome is 3.32 Mb, with a GC content of 64.2%. The genome contains 3,005 predicted genes, including 2,923 predicted protein-coding genes.

10.
Microbiol Resour Announc ; 10(44): e0079321, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34734770

RESUMO

Here, we report the draft, nearly complete genome sequence of the human oral actinobacterium Schaalia odontolytica strain ORNL0103, which was isolated in association with "Candidatus Saccharibacteria" HMT352 strain ORNL0105. The genome was sequenced using a combination of Pacific Biosciences and Illumina platforms and encodes 1,948 proteins and 60 RNAs.

11.
Microbiol Resour Announc ; 10(23): e0041221, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34110241

RESUMO

Actinomyces sp. HMT175 strain ORNL0102 was isolated from a human saliva sample and can serve as a host for the ectobiont saccharibacterium (TM7) HMT957. Its 3.3-Mbp circular chromosome was completely sequenced using PacBio long reads, and it encodes 2,408 proteins and 63 RNAs.

12.
J Vis Exp ; (170)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33938896

RESUMO

Many bacterial species cannot be cultured in the laboratory using standard methods, posing a significant barrier to studying the majority of microbial diversity on earth. Novel approaches are required to culture these uncultured bacteria so that investigators can effectively study their physiology and lifestyle using the powerful tools available in the laboratory. The Candidate Phyla Radiation (CPR) is one of the largest groups of uncultivated bacteria, comprising ~15% of the living diversity on earth. The first isolate of this group was a member of the Saccharibacteria phylum, 'Nanosynbacter lyticus' strain TM7x. TM7x is an unusually small bacterium that lives as a symbiont in direct contact with a bacterial host, Schaalia odontolytica, strain XH001. Taking advantage of the unusually small cell size and its lifestyle as a symbiotic organism, we developed a protocol to rapidly culture Saccharibacteria from dental plaque. This protocol will show how to filter a suspension of dental plaque through a 0.2 µm filter, then concentrate the collected Saccharibacteria cells and infect a culture of host organisms. The resulting coculture can be passaged as any normal bacterial culture and infection is confirmed by PCR. The resulting binary culture can be maintained in the laboratory and used for future experiments. While contamination is a possibility, the binary culture can be purified by either further filtering and reinfection of host, or by plating the binary culture and screening for infected colonies. We hope this protocol can be expanded to other sample types and environments, leading to the cultivation of many more species in the CPR.


Assuntos
Acetobacteraceae/patogenicidade , Bactérias/patogenicidade , Boca/microbiologia , Simbiose
13.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972424

RESUMO

The oral microbiome plays key roles in human biology, health, and disease, but little is known about the global diversity, variation, or evolution of this microbial community. To better understand the evolution and changing ecology of the human oral microbiome, we analyzed 124 dental biofilm metagenomes from humans, including Neanderthals and Late Pleistocene to present-day modern humans, chimpanzees, and gorillas, as well as New World howler monkeys for comparison. We find that a core microbiome of primarily biofilm structural taxa has been maintained throughout African hominid evolution, and these microbial groups are also shared with howler monkeys, suggesting that they have been important oral members since before the catarrhine-platyrrhine split ca. 40 Mya. However, community structure and individual microbial phylogenies do not closely reflect host relationships, and the dental biofilms of Homo and chimpanzees are distinguished by major taxonomic and functional differences. Reconstructing oral metagenomes from up to 100 thousand years ago, we show that the microbial profiles of both Neanderthals and modern humans are highly similar, sharing functional adaptations in nutrient metabolism. These include an apparent Homo-specific acquisition of salivary amylase-binding capability by oral streptococci, suggesting microbial coadaptation with host diet. We additionally find evidence of shared genetic diversity in the oral bacteria of Neanderthal and Upper Paleolithic modern humans that is not observed in later modern human populations. Differences in the oral microbiomes of African hominids provide insights into human evolution, the ancestral state of the human microbiome, and a temporal framework for understanding microbial health and disease.


Assuntos
Evolução Biológica , Ecologia/métodos , Hominidae/microbiologia , Metagenoma/genética , Microbiota/genética , Boca/microbiologia , África , Animais , Bactérias/classificação , Bactérias/genética , Biofilmes , Placa Dentária/microbiologia , Geografia , Gorilla gorilla/microbiologia , Hominidae/classificação , Humanos , Pan troglodytes/microbiologia , Filogenia
14.
Microbiologyopen ; 10(1): e1137, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33544453

RESUMO

To survive within complex environmental niches, including the human host, bacteria have evolved intricate interspecies communities driven by competition for limited nutrients, cooperation via complementary metabolic proficiencies, and establishment of homeostatic relationships with the host immune system. The study of such complex, interdependent relationships is often hampered by the challenges of culturing many bacterial strains in research settings and the limited set of tools available for studying the dynamic behavior of multiple bacterial species at the microscale. Here, we utilize a microfluidic-based co-culture system and time-lapse imaging to characterize dynamic interactions between Streptococcus species, Staphylococcus aureus, and Actinomyces species. Co-culture of Streptococcus cristatus or S. salivarius in nanoliter compartments with Actinomyces graevenitzii revealed localized exclusion of Streptococcus and Staphylococcus from media immediately surrounding A. graevenitzii microcolonies. This community structure did not occur with S. mitis or S. oralis strains or in co-cultures containing other Actinomycetaceae species such as S. odontolyticus or A. naeslundii. Moreover, fewer neutrophils were attracted to compartments containing both A. graevenitzii and Staphylococcus aureus than to an equal number of either species alone, suggesting a possible survival benefit together during immune responses.


Assuntos
Actinomyces/crescimento & desenvolvimento , Antibiose/fisiologia , Biofilmes/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Streptococcus/crescimento & desenvolvimento , Actinomyces/imunologia , Actinomyces/isolamento & purificação , Técnicas de Cocultura , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Inata/imunologia , Microbiota/imunologia , Microfluídica/métodos , Boca/microbiologia , Neutrófilos/imunologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/isolamento & purificação , Streptococcus/imunologia , Streptococcus/isolamento & purificação
15.
Front Oral Health ; 2: 698481, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35048038

RESUMO

Toll-like receptor 2 (TLR2) activation has been implicated in the pathogenesis of periodontal disease but the identity of the TLR2 agonists has been an evolving story. The serine/glycine lipids produced by Porphyromonas gingivalis are reported to engage human TLR2 and will promote the production of potent pro-inflammatory cytokines. This investigation compared the recovery of serine/glycine lipids in periodontal organisms, teeth, subgingival calculus, subgingival plaque, and gingival tissues, either from healthy sites or periodontally diseased sites. Lipids were extracted using the phospholipid extraction procedure of Bligh and Dyer and were analyzed using liquid chromatography/mass spectrometry for all serine/glycine lipid classes identified to date in P. gingivalis. Two serine/glycine lipid classes, Lipid 567 and Lipid 1256, were the dominant serine/glycine lipids recovered from oral Bacteroidetes bacteria and from subgingival calculus samples or diseased teeth. Lipid 1256 was the most abundant serine/glycine lipid class in lipid extracts from P. gingivalis, Tannerella forsythia, and Prevotella intermedia whereas Lipid 567 was the most abundant serine/glycine lipid class recovered in Capnocytophaga species and Porphyromonas endodontalis. Serine/glycine lipids were not detected in lipid extracts from Treponema denticola, Aggregatibacter actinomycetemcomitans, or Fusobacterium nucleatum. Lipid 1256 was detected more frequently and at a significantly higher mean level in periodontitis tissue samples compared with healthy/gingivitis tissue samples. By contrast, Lipid 567 levels were essentially identical. This report shows that members of the Bacteroidetes phylum common to periodontal disease sites produce Lipid 567 and Lipid 1256, and these lipids are prevalent in lipid extracts from subgingival calculus and from periodontally diseased teeth and diseased gingival tissues.

16.
Genome Biol ; 21(1): 292, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33323122

RESUMO

INTRODUCTION: Microbial residents of the human oral cavity have long been a major focus of microbiology due to their influence on host health and intriguing patterns of site specificity amidst the lack of dispersal limitation. However, the determinants of niche partitioning in this habitat are yet to be fully understood, especially among taxa that belong to recently discovered branches of microbial life. RESULTS: Here, we assemble metagenomes from tongue and dental plaque samples from multiple individuals and reconstruct 790 non-redundant genomes, 43 of which resolve to TM7, a member of the Candidate Phyla Radiation, forming six monophyletic clades that distinctly associate with either plaque or tongue. Both pangenomic and phylogenomic analyses group tongue-specific clades with other host-associated TM7 genomes. In contrast, plaque-specific TM7 group with environmental TM7 genomes. Besides offering deeper insights into the ecology, evolution, and mobilome of cryptic members of the oral microbiome, our study reveals an intriguing resemblance between dental plaque and non-host environments indicated by the TM7 evolution, suggesting that plaque may have served as a stepping stone for environmental microbes to adapt to host environments for some clades of microbes. Additionally, we report that prophages are widespread among oral-associated TM7, while absent from environmental TM7, suggesting that prophages may have played a role in adaptation of TM7 to the host environment. CONCLUSIONS: Our data illuminate niche partitioning of enigmatic members of the oral cavity, including TM7, SR1, and GN02, and provide genomes for poorly characterized yet prevalent members of this biome, such as uncultivated Flavobacteriaceae.


Assuntos
Marcadores Genéticos , Metagenoma , Microbiota/genética , Boca/microbiologia , Adaptação Fisiológica , Adulto , Bactérias/genética , Feminino , Genoma Bacteriano , Humanos , Sequências Repetitivas Dispersas , Masculino , Metagenômica , Pessoa de Meia-Idade , Filogenia , RNA Ribossômico 16S
17.
J Oral Microbiol ; 12(1): 1814666, 2020 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-33209205

RESUMO

BACKGROUND: The vast majority of bacteria on earth have not yet been cultivated. There are many bacterial phyla with no cultivated examples including most members of the Candidate Phylum Radiation with the exception of human oral isolates from the phylum Saccharibacteria. AIMS: The aims of this research were to develop reproducible methods and validate approaches for the cultivation of human oral Saccharibacteria and to identify the conceptual pitfalls that delayed isolation of these bacteria for 20 years after their discovery. METHODS: Oral samples were dispersed and passed through 0.2 µm membrane filters. The ultrasmall saccharibacterial cells in the filtrate were pelleted, inoculated into broth cultures of potential bacterial host cells and passaged into fresh medium every 2-3 days. RESULTS: Thirty-two isolates representing four species of Saccharibacteria were isolated in stable coculture with three species of host bacteria from the phylum Actinobacteria. Complete genome sequences were obtained for 16 isolates. CONCLUSIONS: Human oral Saccharibacteria are obligate bacterial parasites that can be stably passaged in coculture with specific species of host bacteria. Isolating these important members of the human oral microbiome, and many natural environments, requires abandoning many of Koch's concepts and methods and embracing novel microbiological approaches.

18.
J Lipid Res ; 61(12): 1645-1657, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32912852

RESUMO

Porphyromonas gingivalis is a Gram-negative anaerobic periodontal microorganism strongly associated with tissue-destructive processes in human periodontitis. Following oral infection with P. gingivalis, the periodontal bone loss in mice is reported to require the engagement of Toll-like receptor 2 (TLR2). Serine-glycine lipodipeptide or glycine aminolipid classes of P. gingivalis engage human and mouse TLR2, but a novel lipid class reported here is considerably more potent in engaging TLR2 and the heterodimer receptor TLR2/TLR6. The novel lipid class, termed Lipid 1256, consists of a diacylated phosphoglycerol moiety linked to a serine-glycine lipodipeptide previously termed Lipid 654. Lipid 1256 is approximately 50-fold more potent in engaging TLR2 than the previously reported serine-glycine lipid classes. Lipid 1256 also stimulates cytokine secretory responses from peripheral blood monocytes and is recovered in selected oral and intestinal Bacteroidetes organisms. Therefore, these findings suggest that Lipid 1256 may be a microbial TLR2 ligand relevant to chronic periodontitis in humans.


Assuntos
Glicina , Lipopeptídeos/metabolismo , Porphyromonas gingivalis/metabolismo , Serina , Receptor 2 Toll-Like/metabolismo , Animais , Humanos , Ligantes , Lipopeptídeos/química , Camundongos
19.
Microbiome ; 8(1): 65, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32414415

RESUMO

BACKGROUND: The low cost of 16S rRNA gene sequencing facilitates population-scale molecular epidemiological studies. Existing computational algorithms can resolve 16S rRNA gene sequences into high-resolution amplicon sequence variants (ASVs), which represent consistent labels comparable across studies. Assigning these ASVs to species-level taxonomy strengthens the ecological and/or clinical relevance of 16S rRNA gene-based microbiota studies and further facilitates data comparison across studies. RESULTS: To achieve this, we developed a broadly applicable method for constructing high-resolution training sets based on the phylogenic relationships among microbes found in a habitat of interest. When used with the naïve Bayesian Ribosomal Database Project (RDP) Classifier, this training set achieved species/supraspecies-level taxonomic assignment of 16S rRNA gene-derived ASVs. The key steps for generating such a training set are (1) constructing an accurate and comprehensive phylogenetic-based, habitat-specific database; (2) compiling multiple 16S rRNA gene sequences to represent the natural sequence variability of each taxon in the database; (3) trimming the training set to match the sequenced regions, if necessary; and (4) placing species sharing closely related sequences into a training-set-specific supraspecies taxonomic level to preserve subgenus-level resolution. As proof of principle, we developed a V1-V3 region training set for the bacterial microbiota of the human aerodigestive tract using the full-length 16S rRNA gene reference sequences compiled in our expanded Human Oral Microbiome Database (eHOMD). We also overcame technical limitations to successfully use Illumina sequences for the 16S rRNA gene V1-V3 region, the most informative segment for classifying bacteria native to the human aerodigestive tract. Finally, we generated a full-length eHOMD 16S rRNA gene training set, which we used in conjunction with an independent PacBio single molecule, real-time (SMRT)-sequenced sinonasal dataset to validate the representation of species in our training set. This also established the effectiveness of a full-length training set for assigning taxonomy of long-read 16S rRNA gene datasets. CONCLUSION: Here, we present a systematic approach for constructing a phylogeny-based, high-resolution, habitat-specific training set that permits species/supraspecies-level taxonomic assignment to short- and long-read 16S rRNA gene-derived ASVs. This advancement enhances the ecological and/or clinical relevance of 16S rRNA gene-based microbiota studies. Video Abstract.


Assuntos
Bactérias , Biologia Computacional , Bactérias/genética , Teorema de Bayes , Biologia Computacional/métodos , Microbioma Gastrointestinal/genética , Humanos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
20.
Microbiol Resour Announc ; 8(42)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624156

RESUMO

Strain AC001 is a cultured representative of human microbial taxon 488, a bacterium from the candidate phylum Saccharibacteria It is an obligate parasite with a genome of <0.9 Mb and grows in coculture with its host, Pseudopropionibacterium propionicum The complete genome sequence is presented here.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...